Encapsulating Environmental Models and Data using Java
and XML

A. E. Rizzoli®, R. M. Argent®, M. Manglaviti’, and M. Mutti®
CIDSIA, Manno, Switzerland (andrea@idsia.ch}

Y Centre for Environmental Applied Hydrology; Deparmment of Civil and Environmental Engineering
The University of Melbourne, Australia (R Argent@unimelb.edu.au)

¢ University of Applied Sciences of Southern Switzerland, Department of Informatics and Electronics, Manno,
Switzertand

Abstract: Advances in distributed and component-based computing, particularly via the Internet, are paving
the way for a client-server approach to simulation modelling. In this approach, components are provided as ‘ser-
vices' on Internet sites, from which model-building clients select and run only those components necessary 10
meet the modelling needs of a given problem situation. This approach enhances model component re-use, but
creates significant difficulties in model component specification and communication. A range of component
communication protocols, such as OMG's CORBA, Microsoft's DCOM (now ".NET"), and Sum's Java RMI are
available. This paper discusses these approaches and tools and then addresses the problem of effectively separat-
ing model interfaces from their implementations, irrespective of the communication selution adopted. This prob-
lem is addressed using a "data-binding" solution based on XML (eXtensible Markup Language) and Java. The
solution is based on using an XML-schema to describe the input and output interface of the component, and the
design and implementation of dedicated "schema-mapper” applications which read the schema and generate the
code needed for component data import and export. Once a schema for a model is written, model developers can
access and run the model simply by accessing its "published” mterface.

Keywords: Model integration; XML schema; Component-based modelling; Distributed modelling

1. INTRODUCTION spective of the communication solution adopted.
This problem is addressed in the context of auto-
matically encapsulating a model component into a
given distributed computing standard. A "data-
binding" solution based on XML (eXtensible
Markup Language) and Java is proposed, although
this approach can be logically extended io other sys-
tems. The proposed solution 1§ based on using an
XML-schema (o describe the semantics and the svn-
tax of the input and output interface of the compo-
nent, and the design and implementation of dedi-
cated "schema-mapper” applications which read the
schema and generate the code needed for component
data import and export. Thus, once a schema for a
model is given, the model interfaces can be auto-
matically generated. In such a way, developers of
different distributed computing eavironments pro-
vide "schema-mappers”, and the modeiler need not
write a “driver” for esach component, but rather
writes a detailed description of the data in XML.

Advances in component-based computing and com-
ponent distribution, particuiarly via the Internet, are
paving the way for a client-server approach to simu-
lation modelling. Advantages include easier model
component maintenance on dedicated servers,
thereby freeing scientist and manager end-users from
much local hardware and software specific model
management. Distributed computing also means that
mode! components can be seen as Internet "services”
from which users can select only those components
required to construct a model for a particular appl-
cation. This approach alse enhances model compo-
aent re-use. MNevertheless, the Internet and distrib-
uted computing have also brought with them many
headaches. The requirement for components to ef-
fectively communicate and work together hag
spawned & wide range of standards and competing
approaches,

This paper discusses these approaches and tools and
then addresses the problem of effectively separating
model interfaces from their implementations, rre-

1649

2. DISTRIBUTING RESQOURCES OGN THE
INTERNET

At the beginning of the “information-era”, after
WWII, computers were rare, and resources were
centralised around individual machines. The advent
of personal computers in the late 1970s changed this,
and initiated a move towards distributed resources,
albeit through small computer clusters in local area
networks. This was an overall positive evolution in
the history of compuating, since it moved computing
resource availability and affordability out of the
realm of research centres and universities and into
offices and homes.

This revelution alse had an impact in the field of
environmental modeliing and software, Through the
use of PC-based compilers, environmental managers,
researchers, and students were able to design, im-
plement and run mathematical models, enjeying an
unprecedented flexibility and freedom of experimen-
tation.

The downside of these developments was the prolif-
eration of the programming languages and data stan-
dards adopted by researchers in coding their models.
Two effects made users take a more sertous look at
what was going on: first the acknowledgement that
re-implementing models every time a compater op-
erating system was upgraded, was not the way to go.
Too much effort has been spent - and it is still cur-
rently spent - in trying to re-use and encapsulate
“legacy models” into new modelling system. This
paper aims o help in reducing the effort of this en-
deavour. The second effect was the widespread
adoption of the Internet in the early 90s that made
possible online exchange of data and models.

The technological advances brought by the Internet
raised the attention of researchers towards two or-
thogonal approaches to distributing information,
namely:

¢ distributed data, metadata, and models; and

o distributed computing resources, providing
modei solvers and simulators as Internet ser-
vices.

fn this paper we focus on the latter feature, in par-
ticudar investigating the possible developments im-
plied by distributing computing resources, from col-
laborative and distributed computing 0 model and
data interchange and re-use.

3. THE BASIC ARCHITECTURES FOR
NETWORK COLLABORATION

Architectures for distributed computing have been
under development for some twenty years (Figure 1),
Long before web browsers became available, com-
puting connectivity was being pursued through ex-
amples such as the Unix rpc (remote procedure
call) library routines [Nelson, 1981]. Using the rpc
library, a C programmer could make procedure calls
on other machines, passing parameters along the
way. While this feature found little application in

1650

environmental modelling, it paved the way to many
of the later Internet applications.

Microsoft developed various communication fea-
tures in their flagship Windows operating system,
starting from the Windows for Workgroups evolu-
tion of Windows 3.11, released in 1992. They intro-
duced Object Link Embedding (OLE) [Microsoft
Corporation, 1987-1992] and Dynamic Data Ex-
change {DDE) {Petzold 1992]. Dynamic Data Ex-
change defines applications as clients and servers
and, as the name implies, allows the client and the
server to exchange data. These concepts evolved
into Microsoit’s COM (Component Object Model)
architecture, which enables development of cli-
ent/server applications based on the object-oriented
paradigm.

In 1989, a group of software and hardware vendors
formed a consortium, the Object Management Group
{OMGQ), committed to "creating a component-based
software marketplace by hastening the introduction
of standardised object software”. The muajor by-
product of their effort was the Common Qbject Re-
quest Broker Architecture (CORBA), the first speci-
fication of which was published in October 1991,
An Object Request Broker is a software device that
allows sharing of software objects on a network.
OMG also developed ITOP (Internet Inter-ORB pro-
tocol), which allows ORB to work on the Iniernet.
CORBA provides a language (IDL, Interface Defini-
tion Language) for writing interfaces for existing
applications, written in different languages, which
run on different machines on a network,

Basically, OMG invented the architecture which is
found in Microsoft’s DCOM (Distributed COM) and
Sun’s Java RMI (Remote Method Invocation). Both
these approaches have similarities to the CORBA
architecture; the differences are evident at a lower
level, when examining the inner workings of these

non windows windows
1981 e :
1987 OLE
1991 Corba 1.0 :
1992 | DDE
1994 - com
1996 . DCOM
1997 | JavaRMI |
2001 NET

Vv

Figure 1. A timeline for distributed com-
puting.

architectures [Tallman and Kain, 1998; Raj, 1998].
Al these architectures provide valuable tools that
support development of software systems which ex-
ploit the Internet #s a medium 1o publish, exchange
and develop environmental models and data. In the
next section we will present some of these applica-
fions.

4. PUTTIMNG DISTRIBUTED BMODELS
AMND BATA TO WORK

In this section we present different approaches to
distributed modelling, and to the use of the Internet
as a support to modelling and simulation activities.
There are available a range of examples where com-
ponents and applications reside or are executed at
either the server or client end. Some of these exam-
ples include:

= web-based simulations, where data and pro-
grams reside on the server. In these, a server-
side application can also provide an interface 1o
the program by means of CGl-scipts or Java
Applets.

v distributed simulation, where different simula-
tion components {often legacy applications) are
separated, possibly on different machines, and
mtegrated model execution is undertaken by
passing input and output between applications

a distributed medel bases, where model reposito-
ries are available on Internet sites. Users can
download and run models from these sites (o
meet particular needs.

4.1. Gemeral Purpose: DMSO HLA

The Defense Modeling and Simulation Office
{DMS0) has promoted and developed the High
Level Architecture (HLA), a general purpose archi-
tecture for simulation reuse and interoperability.
The main DMSO objective was to create a software
environment in which distributed simulation was
possible and where they could alse re-use legacy
models. HLA is now an open standard (IEEE Stan-
dard 1510) and has also been chosen as the facility
for Distributed Simulation Systems by the OMG.

An example of a system intended to be fully compli-
ant with the HLA is DIAS, the Dynamic Information
Architecture System [Sydelke et al., 1999]. This
architecture underlies the object-oriented implemen-
tation of the Integrated Dynamic Landscape Analysis
and Modelling System {OO-IDLAMS) and was also
the architecture in the Dynamic Environmental Ef-
fects Model {DEEM), used in a number of military-
refated environmental effect applications in the US.
DIAS supports the integration of a variety of models,
databases and information processing applications.
DIAS alsc contains an expert system that assists us-
ers in developing new components to meet particular
information management needs, based on considera-
tion of the context and scale of the problem sitvation,
fn DIAS-based applications, integration of legacy

1651

models is undertaken through a ‘registration’ process.
Legacy applications do not directly communicate
amongst themselves, but interact indirectly via do-
main-specific entity objects. This approach provides
a generally stable modelling environment as addi-
tions or deletions of models do not affect the core
operation. Legacy applications are also executed in
their native languages (e.g., FORTRAN, C, =sic.),
and, using an ORB-based approach, can operatz in a
distributed manner across the Internet.

4.2, Web-Based Processes

Examples of web-based server-end environmental
applications are becoming increasingly available,
albeit in generally simple mapping and request-
response forms. Simple examples can be found in
the air and water monitoring web sites provided by
various national and state envircnmental protection
agencies and authorities. Many of these sites (eg
http://www.sca.nsw.gov.al/) can be queried to pro-
vide the outputs from statistical models related to
"State of the Environment” styie indicators and pro-
duce outputs that report rated or percentile results.

4.3, Distributed Simulation

An example of distributed simulation is found in the
Modular Modelling System {(MMS). This is a
framework for modeliing that can be used to de-
velop, support and apply any dynamic model
{Leavesley, 1996]. It s a database-centric system
with major componenis for input data pre-
processing, development and application of models,
and post-process analysis and visualisation. Com-
munication between models is performed via ex-
change of ASCI files with a central database. The
strengths of the system are that is supports a signifi-
cant selection of legacy systems, although this is
offset by the reduced re-usability that arises by hav-
ing complete models, rather than components, en-
capsulated and linked.

4.4, Distributed Model Bases

ECOBAS is an example of a model-base, and can be
describad as a system that produces model documen-
tation that is easily accessible, complete, standard-
ised, comparable and transferable to different appli-
cations [Hoch et al., 1998). Documentation includes
the basic model eguations and variables as well as
additional information about the application context
and validity issues for model use. The system pro-
vides some of the semantic requirements for select-
ing appropriate models from distributed sources, and
also supports some of the technical reguirements.

5. ATTACHING SEMANTICS TO DATA

Distribution of services {modeis and data), such as
those described above, leads to problems in commu-
nication among these services. There is a need for a

software infrastructure that enables data and model
integration on the Internet and, in general, enables
Internet applications (models in our case) {0 retrieve
and process information, without knowing in ad-
vance what this information will look like. There-
fore this infrastructure must provide semantics to
data and to applications.

The probiem of attaching semantics to Internet data
and applications has been pursued for some time and
there are some promising efforts that incorporate
decades of Knowledge Representation research
[Berners-Lee et al., 2001}, The suggestion is to use
ontologies to describe the knowledge domain. In
this situation, an ontology is a description (like a
formal specification of a program) of the concepts
and relationships that can exist for an agent or a
community of agents [Gruber, 1993]. Ontologies
provide a way to interpret knowledge. and can be
used to provide information to external users for the
interpretation of the modelling domain.

Example ontologies for various domains have been
developed, such as the Unified Modeling Language
for software engineering [Booch et al., 1999], Mode-
lica for control engineering [Matisson et al. 1998],
Structured Modelling for management sciences
{Geoffrion, 1987], Ecobas for ecological modelling
[Hoch et al., 1998], and the open modelling engine
for environmental modelling [Rizzoli et al., 1998].

The next step is to automate the interpretation of
ontologies, creating web agents able to read an on-
tology and then to interpret data structured according
io that ontology. Among the various alternatives, the
World Wide Web Consortium is promoting the Re-
source Description Framework (RDF), as a standard
to represent the meaning of Internet resources [W3C,
2001a].

5.1. Applying the Semantic Web Framework to
the Case of Distributed Modelling and Simu-
lation

It is expecied that, given current directions in Inter-
net use and distributed computing, model compo-
nents and data will become increasingly available as
resources on the web, allowing their use in construc-
tion of models that support environmental decision
making.

While RDF provides a way 1o represent the semantic
structure of data and models, a software infrastruc-
ture to put RDF into action is not readily available.
Unti! such an infrastructure becomes avatlable, the
following approach provides one method for achiev-
ing the desired result. The approach uses an XM/7,
schema [W3C, 2001b] o design and implement the
specification of the model interface, rather than
RDF.

5.2. From Interface Specification fo Automatic
Code Generation using an XM, Schema

1652

Models process data. For example, dynamic models
take initial states, parameter values and time series as
inputs, and generally produce output time series.
The user must know the input data format to feed the
mode! and the output data format to interpret the
result. To embed such a mods! in another applica-
tion, or publish it as an applet in a web page, a de-
veloper must write “drivers” (data conversion pro-
grams) to transform the user input into the correct
input Tormat. This task can be tedious and time con-
suming and would benefit from automation. We
offer a solution (o this based on XML documents
and XM]I. schemas.

The first step was to write an XML schema to define
the syntax rules to specify the mode! interface. An
XML schema describes the elernents that are used to
build XML data files. Another option would have
been to write an XML Document Type Definition
{(DTD) [W3C, 2000] to write the grammar rules of
the model interface. However the XML DTD is lim-
ited, since it does not aliow specification of the exact
format of a string, which is fundamental to define the
different data types, nor does it allow definition of
repeated elements, which are essential for time serieg
representation.

In Figure 2 we show a fragment of the XML schema
that defines the format of the interface for the hydro-
logical rainfall-runoff model IHACRES [Jakeman
and Hornberger, 1993]. Note the “record-like”
structure of the element Input Data Element
in the XML schema - it is composed of two meas-
urements, rainfall and temperature, and the date
{day, month, vear} of sampling. The Input Data
Element can represent a time series using the
<gegquence:> tag in the schema to indicate the pos-
sibility of repeated elements.

<complexType name="TH_input®>
<Sequence>
<element name="InputDataElement">
<complexType:>
<alement name="Date">
<complexTypa>
<attribute name="day"
type="integer" />
name="month”
type="integer* />
name="year"
Type="integer" />
</complexTypes
</element>
<glement name="Temperature”>
<complexTypaes»
<attribute

<attribute

<attribute

name="centigrades”
types="doukble" /=
</complexType:
</glement>
<glement name="Rainfall">»
<complexType>
<attribute name="guantity"
type="double" />
</complexType>
</alement>
</complexTypeas
</element>

Figure 2. A fragment of an XML schema.

Provided every model has a schema, such as that
shown in Figure 2, for its input and output interface
it is possible to generate XML data to feed i, and
also to mterpret the XML output. Using the XML
schema indicated in Figure 3 it is possible to gener-
ate the XML document shown in Figure 4.

In the following, we describe the other necessary
component of this approach - how to parse XML
data and map it into the model memory, that is, how
we automatically generate the model driver starting
from the XML schema.

5.3. Generating Model Drivers with the “Schema
Mapper”

The following assumes model source code written in
Fava, but, in general, the model can be written in any
language, provided that an interface between the
model original language and Java is provided.

For sake of simplicity and ease of development, we
used the Java Remote Method Invocation (RMI)
FSun Microsystems, 1999] as the backbone of owr
client-server application. It would be relatively easy
o swiich to CORBA, thus accessing the wealth of
language interfaces it provides.

The Schema Mapper is a Java application that reads
the XMI. schema and generates a set of Java classes,
which are then used by the Marshaller and the Un-
marshaller, as described in the XML Data Binding
Specification [Sun Microsystems, 2001]. The Un-
marshaller parses the XML document and maps the
data into Java Objects. The Marshaller, on the other
side, “flattens” Java Objects in a text format as an
XML document. The relationships between the
Schema Mapper, the Marshaller, and the Unmar-
shaller are described in Figure 3. The classes gener-
ated by the Schema Mapper provide a set of methods
to access, in both read and write mode, ali the com-

XML

Schema

Java
Classes

Marshallir/

*

|

e -

XML Java
Document Objects

Figure 3. The XML schema is used to generate
a set of Java classes, which enable data “mar-
shalling” and “unmarshalling™

1653

<7?7xml wersion="1.0"
<slimulation>

ancoding="UiF-8" 7>

<parameters al="0.1" al="0.2"
Dl="0.4" tmax="0G.7" bl="0.3" tau="0.6"
o="0_.5" />

<InputDataElement>
<rainfall quantity="5.0" />

<date month="2" day="3" year="1"
s
<temperaturs centigrade="4.0" /=
</InputDatablemsnt »
<InputDataElement >
<rainfall cuantity="10.0" />
<dare month="7" dav="8° year="6"

.f >
<temperature centigrade="3,0" />

</ InputDataElement >

Figure 4. A fragment of an XML document.

ponents of the model interface, as specified in the
XML interface specification.

These classes must be distributed both to the model
server and to the model client. In the case of the
THACRES model, the Schema Mapper will auto-
matically generate the classes IH_input and
TH_output {from the XML schema in Figure 2,
where the element IH_input is defined; the ele-
ment TH_output is defined later in the schema in
an analogous way). These classes will contain the
methods required to read and write all the fields of
the IHACRES maodel interface.

5.4. Writing a Model Server

The model author must write only a very short piece
of code, that is, a method that can be invoked from
an external application. This method wili take as
input an object of type TH_input and return an
object of type ITH_Output.

The clear advantage is that the model driver must be
written only once by the model developer. There is
no need for reverse engineering by third party mod-
ellers to re-use this model. In our case study, the
IHACRES model, it is sufficient to write the
TH_run method that maps the data structures con-
tained in the ITH_input to the infernal data struc-
tures of the simulation model and vice-versa for the
output.

Once the developer has written this simple interface,
the model can be either distributed as java bytecode
or published on an Internet model server. We have
written an RMI application that acts as a model
server, and that publishes models on the network,
This model server can provide remote access to
many modais, due to the Java RMI architecture.

5.5. Writing a Model Client

While the model author has to do a blt of work to use
the TH _input and IH_output classes, the task
on the client side is much simpler and could be eas-
ily autornated. The model user writes an application
that calls the “run” method of the server (in our case,

public class ThacresClient {

publics gtatic veid maini{String argsili) |
try {
/7 locks for an Thacres model
/7 on the RMI naming service

Thacres ih = (Thacres)Naming.lookup!
“rmi://www. modelserver. com/Thacres
Service"};

// load the XML data from file
IH_Input inputdata = getIn-
put(args (0] + “.xmi");
// call the remote model
IH _Output outputdata =
ih.rRunThacres{inputdatal;

Y /F end try

Bigure 5. A fragment of the model client code.

TH_run}. The application is very simple and the
relevant code fragment is reporied in Figure 3.

The application is structured as follows: 1) unmar-
shal the data from an XML file, which complies to
the XML schema of the model, into an input inter-
face java object; 2) pass the java object to the run
method; 3) get back a java object structured accord-
ing to the output interface, and 4) marshall this ob-
ject inko an XML file which is then further processed
(e.g. graphic/text display of data).

8. CONCLUSIONS

With increases in the provision of distributed model-
ling components, it has become apparent that simply
selecting a communication protocol will not solve
the problems of communication and execution using
distributed services, such as across the Internet. One
of the key problems lies in the area of separating
models from their interfaces, and specific input and
output formats, irrespective of a selected communi-
cation protocol. The approach presented here,
whereby an XML-schema describes the input and
output interface for a component and a schema-
mapper application generates the associated data
management code, provides a method that relieves
the coding burden on the developer and supports a
consistent method for encapsulating environmental
models,

7. REFERENCES

Berners-Lee, T., J. Hendler, and O. Lassila, The se-
mantic web. Scientific American, May 2001,

Booch, G., J. Rumbaugh and 1. Jacobson, The uni-
fied modeling language user guide. Addison-
Wesley, Reading, 482 pp., 1999

Geoffrion, A.M., An Introduction to Siructured
Modeling. Management Science, 33(5), 347-588,
1587,

Gruber, T.R., A translation approach to portabie
oniologies. Knowledge Acquisition, 5{2):199-
220, 1993,

Hoch, R., T. Gabele and J. Benz, Towards a standard
for documentation of mathematical models in
ecology. Ecological Modelling, 113:3-12, 1998,

1654

Jakeman, A.J. and G.M. Hornberger, How Much
Complexity is warranted in a Rainfall-Runoff
Model?, Wuater Resources Research, 29(8),
2637-2649, 1993,

Leavesiey, G.H., S.L. Markstrom, M.5. Brewer and
RJ. Viger, The modular modeling system
(MMS)} - The physicai process modeling compo-
nent of a database-centred decision support sys-
tern for water and power management, Water, Air
and Soil Pollution, 90(1-23,303-311, 1996,

Mattsson, S.E., H. Elmgvist and M. Otter, Physicai
system modeling with Modelica. Control Engi-
neering Practice, 0, 501-310, 1998,

Microsoft Corporation, Microsoft Windows version
3.1 Software Development Kit Guide io Fro-
grapuning. MSDN Library Archive Edition,
1987-1992.

Nelson, B.J., Remote Procedure Call, XEROX PARC
CSL-81-9, May 1981,

Petzold, C., Programming Windows 3.1, 3d ed. Mi-
crosoft Press, MSDN Library Archive Edition,
1992

Raj, .8, A Detailed Comparison of CORBA,
DCOM and Java/RMI (with specific code exam-
ples), http/iwww.execpe.com/~gopalan/
misc/compare html, 1998,

Rizzoli, AE., LR. Davis, and D.J. Abel, A model
management sysiem for model integration and re-
use, Decision Support Svstems, 24, 127-144,
1998,

Sun Microsystems, JSR-31 - XMIL Data Binding
Specification, hitp://jcp.org/isr/detail/03 1 jsp,
2001.

Sun Microsystems, RMI: Java Remote Method Invo-
cation - Distributed Compuating for Java
http://fjava.sun.com/marketing/coliateral/javarmi.
htm!, 1999,

Sydelko, P.J., K.A. Majerus, J.E. Dolph and T.N.
Taxon, A dynamic object-oriented architecture
approach to ecosystem modeling and simulation,
American Society of Photogrammetry and Re-
mote Sensing Annual Conference, Portland, OR.,
USA, 410-421, 1999,

Tallman, O. and 1.B. Kain, COM versus CORBA: a
decision framework. Distributed Computing,
September-December 1998,

W3C, Euxtensible Markup Language (XML) 1.0
{Second Edition)
hitp:iwww.w3.org/ TR/20GO/REC-xml-
20001006, 2000.

W3C, Semantic Web Activity: Resource Description
Framework (RDE),
http:/fwww.ow3.org/RDE/, 2001 a.

W3C, XML Schema.
hitp/www w3 .org/ XML/ Schema, 2001b.

